

High-Altitude Illness Can Happen Lower Than You Think: A Case of HAPE in a 19-Year-Old with Down Syndrome at 2300 Meters

Brandon Middlemist BA¹, Nicholas Breitnauer MD^{1,2}

¹University of Colorado School of Medicine, ²Department of General Internal Medicine, Denver Health and Hospital Authority

Background

High-altitude pulmonary edema (HAPE) occurs after rapidly ascending to high altitudes (>2,500m)².

Typically presents within 1-3 days of ascent

Clinical signs and symptoms:

- Cough, rapid onset dyspnea, pink frothy sputum, cyanosis
- Can rapidly progress to respiratory distress and respiratory failure

Risk Factors for HAPE^{1,3,4}:

- Severe physical exertion
- Recent or active respiratory viral illness
- Pulmonary hypertension
- Pulmonary overperfusion in the setting of current or historic cardiac defect

Case Presentation

19 y/o female with history of AVSD (repaired) and Down Syndrome travelling from Missouri (244m) to Moab, Utah was hiking at the Great Sand Dunes National Park (2,345m):

- Developed severe dyspnea, headache, vomiting.
- Had symptoms of viral upper respiratory infection one week prior, has history of endocarditis w/ URIs
 Her mother, a nurse, measured and found her O2 saturation to be 60% and brought her to an emergency room at the critical access hospital in Del Norte, Colorado (2,396m).

Evaluation and Workup

- Initial SpO₂ upon presentation to the emergency room was 48%, which rapidly corrected with high-flow oxygen (15L via NRB at 100% FiO₂)
- On exam, appeared in respiratory distress and was tachypneic (RR 32), had bibasilar crackles on auscultation
- Labs:
 - Troponin (ng/mL): 0.45 (initial) \rightarrow 0.5 (hour 3) \rightarrow 0.06 (hour 24)
 - WBC: 7.1
 - NT-BNP (pg/mL): 5602
- Imaging Studies:
 - Chest X-ray demonstrates LUL opacification best seen in lateral view (Figures 1 & 2)
 - Computerized tomography (CT) angiography demonstrates diffuse ground glass opacities without evidence of pulmonary emboli (Figure 3)

Radiographic Findings

Figure 1: AP Chest X-ray

Figure 2: Lateral Chest X-ray

Figure 3: CT-PE

Hospital Course

Symptoms rapidly improved with oxygen:

- Received dexamethasone and nifedipine in the ER
- Continued desaturations to the mid 70s with activity on room air Discharge Plan:
- Coordinated with oxygen company in Missouri to discharge with home oxygen
- Discharged on 2LPM until at lower altitude
- Echocardiography upon returning home

Conclusion

We present a case of HAPE in a teenage female with multiple risk factors:

- Recent respiratory illness
- Severe exertion
- History of corrected congenital heart defect

We encourage families and clinicians to discuss risks prior to travel to moderate/ high altitudes.

Disclosures

The authors have nothing to disclose.

References

- 1. Durmowicz, A. G. (2001). Pulmonary edema in 6 children with Down syndrome during travel to moderate altitudes. Pediatrics, 108(2), 443–447. https://doi.org/10.1542/peds.108.2.443
- 2. Gatterer, H., Villafuerte, F. C., Ulrich, S., Bhandari, S. S., Keyes, L. E., & Burtscher, M. (2024). Altitude illnesses. Nature Reviews Disease Primers, 10, Article 43. https://doi.org/10.1038/s41572-024-00447-2
- 3. Richalet, J.-P., Chenivesse, C., Larmignat, P., & Meille, L. (2008). High altitude pulmonary edema, Down syndrome, and obstructive sleep apneas. High Altitude Medicine & Biology, 9(2), 179–181. https://doi.org/10.1089/ham.2007.1062
- 4. Ucrós, S., Aparicio, C., Castro-Rodriguez, J. A., & Ivy, D. (2023). High altitude pulmonary edema in children: A systematic review. Pediatric Pulmonology, 58(4), 1059–1067. https://doi.org/10.1002/ppul.26294