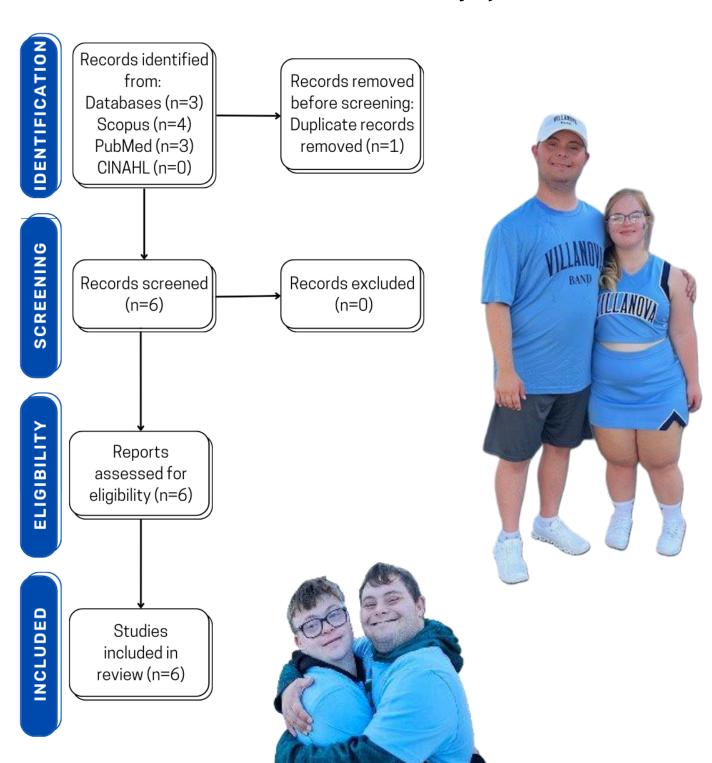
Thomas Jefferson University, Philadelphia, PA

H. Milligan PT, DPT, L. Calabria SPT, M. Dodge SPT, K. Karpinski SPT, A. Payne SPT, L. Sala SPT, J. Veneziale SPT, K. Wilson SPT

Introduction


Background: Down syndrome is a genetic condition associated with physical impairments that impact physical activity and exercise, yet guidance on footwear and orthotics is limited.

Objectives: Summarize the existing research and highlight gaps on shoe and orthotic recommendations for individuals with Down syndrome.

Methods

Search Terms: "Down syndrome, tie sneaker, supra malleolar brace, Foot orthoses, orthotic insoles, Activities of daily living, Psychomotor performance, "Postural balance, endurance, "Walking speed, Gait speed

Exclusion Criteria: < 3 years or > 35 years, articles without full-text access, and articles containing participants who did not have foot abnormalities or who had a recent traumatic injury

Results

Study	Туре	Population	Intervention	Testing Measures	Findings
Endo et al., 2020	Case Study	22-year-old	Insoles	Knee joint angle during gait	 Insoles <u>improved stability of the knee</u> by reducing pronation and decreasing tibial internal rotation. Improved stability of the knee by use of insoles may contribute to <u>improved gait stability.</u>
Hassan et al., 2019	RCT	33 children and adolescents	Custom-fitted footwear (Clarks)	Physical activity levels	 Participants wearing custom-fitted footwear had 20 more minutes of physical activity per day at 6 weeks and 8 more minutes at 12 weeks Custom-fitted footwear was associated with increased steps per day and decreased sedentary activity
Hassan et al., 2020	RCT	30 children/ adolescents	Measurement of foot dimensions	3D foot scanning	 Measurement of foot dimensions of children and adolescents with Down syndrome using 3D scans is reproducible.
Looper et al., 2012	Repeated Measure Study	6 children	Supramalleolar orthoses and off the shelf orthoses	Gait Analysis utilizing the GaitRite system	 SMOs led to longer gait cycle time and decreased cadence, indicating a potential <u>destabilization of gait</u> Weight, height, leg length, and hypermobility have the best correlation with gait parameters for orthotic recommendations
Martin, 2004	Clinical Trial	14 children	Supramalleolar orthoses	Gross Motor Function Measure (GMFM)	 SMOs resulted in immediate and long-term improvement in standing, walking, running and jumping. SMOs resulted in significant long-term improvement in balance.
Selby- Silverstein et al., 2001	Repeated Measure Study	26 children	Customized foot orthoses	Standing foot posture gait parameters using video and force plate pressure	 FOs decreased calcaneal heel eversion in standing FOs increased internally rotated transverse plane foot angle, decreased variability of foot function parameters and walking speed, and increased variability of ankle moment during ambulation.
In Cummarus					

In Summary:

- Combining foot orthotics with sneakers enhances mobility in flat feet, as this combination better corrects pronation than neutral shoes.
- Understanding impairments in individuals with Down syndrome aids in making evidence-based recommendations for orthotics, insoles, and footwear with studies confirming their effectiveness.
- SMOs enhance standing, walking, running, and jumping in children with Down syndrome but may over-correct alignment and restrict movement, potentially affecting gait.
- Insoles can contribute to increased shock absorption and rotational stability of the knee, which is crucial for joint protection and may prevent osteoarthritis as an individual ages.
- Educating patients on the benefits of foot orthotics enhances adherence, enabling clinicians to better address gait and biomechanical impairments in individuals with Down syndrome.

Discussion:

This scoping review resulted in six articles that matched the criteria and highlights the lack of studies and little evidence regarding orthotic and shoe recommendations for individuals with Down syndrome.

Clinical Relevance for Future Research

Future research should investigate:

- The impact of footwear and orthotics on functional mobility, activities of daily living, and participation.
- The impact of musculoskeletal imbalances and foot deformities as the person with Down syndrome ages.
- The effects of footwear and orthotics on functional mobility across the lifespan.
- The impact of a tie, slip on or Velcro closure sneaker.

References

